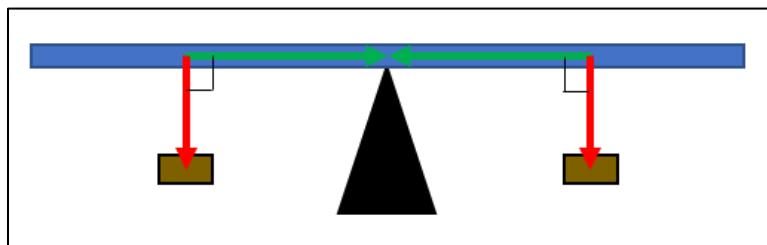


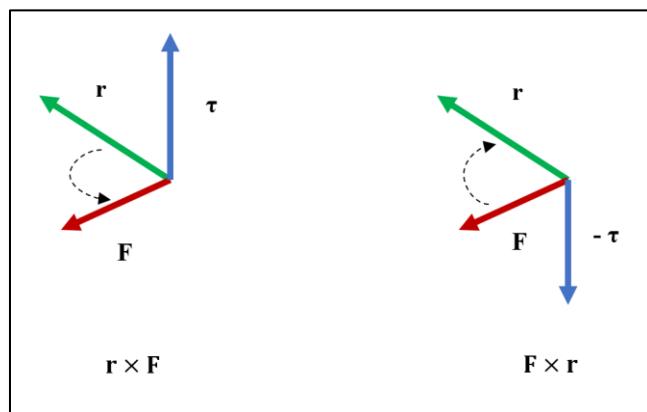
Lab 8: Torque & Static Equilibrium

Learning Goals	Concepts
<ul style="list-style-type: none"> Solve for an unknown mass or length to balance the sum of torques equation. Gain an intuitive understanding of torque. 	<ul style="list-style-type: none"> Torque Static equilibrium Center of gravity
Vocab & Notation	
<ul style="list-style-type: none"> Mechanical equilibrium Pivot Line of action 	<ul style="list-style-type: none"> Translational equilibrium Fulcrum φ
Equations	
$\tau_{net} = \tau_1 + \tau_2 + \dots$ (3)	$\tau = rF \sin \varphi$ (4)
$\tau = rF$ (5)	$(\tau = \mathbf{r} \times \mathbf{F})$

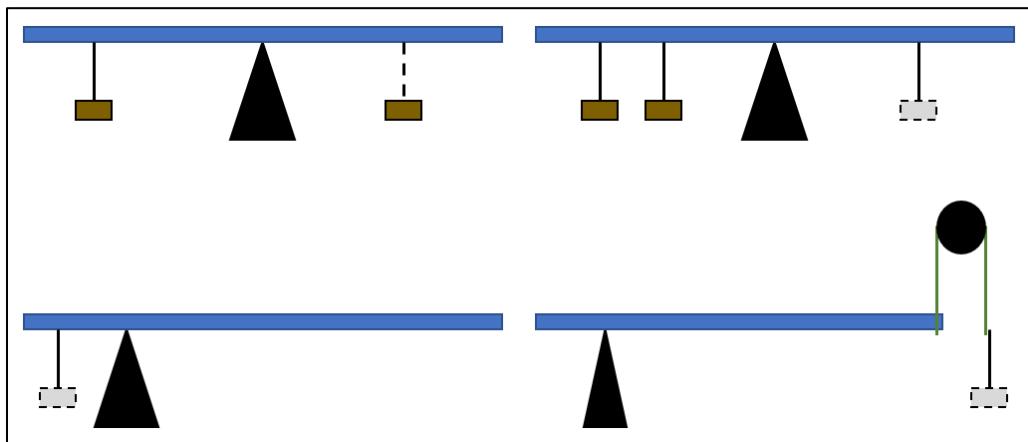
Theory Outline


- Compare torque and Newton's 2nd Law – $F = ma$ and $\tau = I\alpha$
- Torque from a single force – *Equation 4*
- Torque from a perpendicular force – *Equation 5, Meter Stick & Torque*
- Sum of torques and static equilibrium – *Equation 3*

Procedure Outline


- Calculate an unknown position for mass for each setup.
 - Example: pivot at COM, $m_1 = 50$ g, $x_1 = 10$ cm, $m_2 = 100$ g, $x_2 = ?$
- Four Setups:
 - One mass on each side of the meter stick
 - Two masses on one side and one mass on the other
 - Pivot at 10 cm and mass at the 5 cm mark
 - Pivot at 10 cm and an upward force applied with a string and hanging mass

Diagrams


Meter Stick & Torque

Vector Cross Product

Four Setups

