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Negative Absolute Temperature 

by Isaac Woodard 

 

 Abstract – Temperature is a concept used in everyday life for things such as checking the 

weather and cooking food. In thermodynamics, though, temperature is defined formally as the 

partial derivative of internal energy with respect to entropy with particle number and system 

volume held fixed. Entropy is a never-decreasing value which is found from the multiplicity of a 

system’s macrostate. In energy unbounded systems, entropy increases as more energy is put into 

a system. However, in systems where energy is bounded, entropy decreases as the system 

approaches its energy saturation limit. This results in the possibility of negative absolute 

temperatures for energy bounded systems. If a system’s hotness is defined as being able to give 

off heat energy to its surroundings, then a negative temperature system is hotter than any positive 

temperature system. A simple example of a negative temperature system is a two-state 

paramagnet set in a uniform magnetic field. The magnetic dipoles have a high energy state and a 

low energy state. The total energy is hence bounded by the number of dipoles and the system 

exhibits negative temperatures when more than half of the dipoles are in the high energy state. 

Another example of a negative temperature system is the electron gas in the lasing medium of a 

laser. Lasers operate by exciting electrons in a lasing medium to emit photons. To create the laser 

beam, a very large number of electrons must be excited into higher states. In thermal equilibrium, 

less than half of the electrons in a system can be in excited states, but in a laser enough electrons 

are excited to create a population inversion where the majority of the electrons are excited and a 

negative temperature system is created. Negative temperature systems have few practical uses, 

but the concept is useful for theoretical modeling of exotic systems where it is possible for 

entropy to decrease with increasing internal energy. 
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 There are several different ways temperature can be defined, some intuitive and some 

precise. An intuitive way temperature is often understood is by how “hot” an object is. The hotter 

the object is, the higher the temperature. This definition has limitations, though, because the idea 

of “hot” is only correlated to temperature while it is directly tied to the flow of heat between an 

object and its surroundings. A more precise way to define temperature is simply as the value 

given by a thermometer. This definition works essentially by default. While it is simple, though, 

it depends on having a thermometer that works in the necessary temperature range and 

environment.  

 A definition of temperature which has both intuitive and precise meaning is the 

proportionality between temperature and the average kinetic energy of the atoms or molecules in 

an object: 𝑇 ∝ 𝐾𝐸𝑎𝑣𝑒. This is likely the most common definition of temperature in the science 

classroom. Another way to express this idea is that temperature is proportional to an object’s 

total internal energy, 𝑇 ∝ 𝑈, where in the typical case the internal energy comes from the kinetic 

energy of the individual atoms or molecules in an object. Unfortunately, this last definition has 

limitations as well. In particular, it can’t be used to explain negative absolute temperatures. To 

get a working definition for negative temperatures, there are a few additional concepts which 

need to be addressed first.  

 The first of these concepts is multiplicity. Here multiplicity refers to the number of 

different ways to arrange the individual members of a system to get the same overall system. The 

specific arrangements are known as microstates while the overall arrangement is known as a 

macrostate. Multiplicity, then, is the number of different microstates for a given macrostate.1 As 

an example, consider a grocery list with ingredients for several meals. This list can be viewed as 

a macrostate. Another list with the same ingredients but with items listed in a different order 

would be considered the same macrostate. However, the microstate of the list changes. There is a 

different microstate for each specific arrangement of the items on the grocery list.  

 The next concept to consider is entropy. Entropy is directly defined from multiplicity in 

the second law of thermodynamics. The second law of thermodynamics defines entropy as the 

product of Boltzmann’s constant and the natural logarithm of multiplicity.2  

𝑆 = 𝑘 lnΩ 

This relationship means that as multiplicity increases, so does entropy, and conversely as 

multiplicity decreases entropy decreases as well. For systems of particles on the order of 

(1) 
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Avogadro’s number, multiplicities are very large. As a consequence, most of a system’s 

microstates are held by a small number of macrostates. These few macrostates have an 

overwhelmingly higher probability of describing the system than any other macrostate, so much 

so that it is virtually impossible for the multiplicity of the system to decrease. This means that it 

is also virtually impossible for entropy to decrease. The third law of thermodynamics expresses 

the non-decreasing nature of entropy. In particular,1  

∆𝑆 ≥ 0 

This statement holds true for the sum of the change in entropy of a system and its surroundings. 

While the third law can be viewed as a statement of probability, in practice it is an immutable 

fact.  

 With the concept of entropy it is possible to give a formal definition for temperature. 

Temperature can be defined as the reciprocal of the change in entropy of a system with respect to 

the change in its internal energy, 3, 4 

1

𝑇
≡ (

𝜕𝑆

𝜕𝑈
) 

This can be re-written as the change in internal energy with respect to entropy, 

𝑇 = (
𝜕𝑈

𝜕𝑆
)
𝑁,𝑉

 

where the subscripts denote that the relation is only valid as long as the number of things in the 

system, N, and the volume of the system, V, don’t change.1 These expressions allow temperature 

values to be interpreted from the slope of graphs of entropy and internal energy. Such a graph 

can be seen in Fig. 1.  

 It is now possible to describe the conditions under which negative absolute temperatures 

can arise. Absolute temperature refers to temperatures measured on the Kelvin scale. This 

distinction is important because negative temperatures are quite familiar on the Celsius and 

Fahrenheit scales. For reference, absolute zero is equal to about -273o C and -460o F. Negative 

absolute temperature is fundamentally different from negative temperatures on non-absolute 

scales. This difference lies in the energy-entropy relation of negative absolute temperature 

systems. Most of the systems encountered in the world can be described with positive absolute 

temperature. This is because entropy usually increases with increasing internal energy. As can be 

seen in the graph on the left in Fig. 1, this results in a positive temperature value. However, some 

systems have an inverse relationship between energy and entropy. This can be seen in graph on 

(2) 
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the right in Fig. 1. For these systems, entropy decreases once a certain threshold for the internal 

energy is reached. This results in a negative slope and thus a negative absolute temperature.  

 The strange energy-entropy relation for negative temperature systems likely raises the 

question of how heat would flow into or out of such as system. To understand this, let us first 

consider how heat flows for positive temperature systems. In general, positive temperature 

systems are considered “hot” if heat flows out of them into their surroundings. This flow of heat 

is due to a difference in temperature. A positive temperature system with a higher temperature 

will give off heat to a positive temperature system with a lower temperature. This process is 

governed by the third law of thermodynamics and occurs because it increases the total entropy of 

the two systems. While the high temperature system loses entropy by giving off heat, the low 

temperature system gains entropy by receiving the heat. The gain is greater than the loss because 

entropy changes more dramatically at lower positive temperatures.  

 Using the ability to give off heat as the definition of “hot”, negative temperature systems 

can be viewed as infinitely hot compared to any positive temperature system.5 Due to the inverse 

energy-entropy relation for negative temperature systems, they are able to increase their own 

entropy by giving off heat. When a negative temperature system is put into thermal contact with 

a positive temperature system, the total entropy of the two systems is increased when the 

negative temperature system gives off heat to the positive temperature system. In the situation 

where two different negative temperature systems are put into thermal contact with each other, 

the systems will compete for which can gain more entropy by giving off heat. Referring to the 

graph on the right in Fig. 1, the negative temperature system with a temperature closer to 

absolute zero will give off heat. 

 The inverse entropy-energy relation for negative temperature systems comes from one 

main requirement. Negative temperature systems are only possible for systems where the internal 

energy is bounded.6 This bound makes it possible for an increase in internal energy to cause a 

decrease in entropy. Systems capable of exhibiting negative temperatures will first exhibit 

positive temperatures as their internal energy is increased from its minimum. Past a certain 

threshold, though, adding more energy decreases the system’s entropy and the temperature 

becomes negative.  

 Most of the matter that makes up the world around us exhibits positive temperatures for 

any amount of internal energy because typically there is no upper bound on a system’s internal 
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energy. The contrast between how energy and entropy change for systems capable of exhibiting 

negative temperatures and systems which only exhibit positive temperatures can be seen in Fig. 2. 

The figure compares the distribution and temperature of occupied states in a lattice and a spin 

system for increasing amounts of internal energy. 

 A specific system capable of exhibiting negative absolute temperatures is a two-state 

paramagnet. A two-state paramagnet is a collection of magnetic dipoles where each dipole has an 

up-spin and a down-spin orientation. When the paramagnet is placed in a uniform magnetic field 

the two orientations take on different energy values. The orientation that points with the 

magnetic field takes on a low energy equal to –μB, where μ is a constant and B is the strength of 

the uniform magnetic field. The orientation that points against the magnetic field takes on a high 

energy equal to +μB. The number of dipoles which point against the field can be expressed as 𝑁↑ 

and the number of dipoles which point against it can be expressed as 𝑁↓. If the magnetic field 

points down and the high energy orientation points up the total energy of the paramagnet can be 

expressed as 

𝑈𝑡𝑜𝑡 = 𝜇𝐵(𝑁↑ − 𝑁↓) 

which is the sum of the energies of the individual dipoles. Notably, the zero point for the 

paramagnet’s energy occurs when half of the dipoles point up and half point down. Minimum 

energy occurs when all the dipoles point down and maximum energy occurs when all the dipoles 

point up.  

 The negative temperature behavior of this system arises from its inverse energy-entropy 

relation past a certain energy threshold. The cause of this behavior can be seen by inspecting the 

multiplicity of the system. The multiplicity is given by simple combinatorics for a two state 

system, in particular1  

Ω = (
𝑁
𝑁↑
) =

𝑁!

𝑁↑!𝑁↓!
 

For a given number of dipoles, the multiplicity is maximized when half of the dipoles point up 

and half point down. The multiplicity is minimized when all of the dipoles point either up or 

down. The minimum value of the multiplicity is one for any number of magnetic dipoles. The 

maximum value of the multiplicity corresponds to the energy threshold where the system 

exhibits negative temperatures. The minimum values correspond to the bounds on the energy of 

the system. 

(6) 

(5) 
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 If the two-state paramagnet begins at minimum energy with all of the dipoles pointing 

down, the multiplicity and thus the entropy are both at a minimum value. As energy is added to 

the system, its energy-entropy relation is positive and it exhibits positive temperature. This 

continues until half of the dipoles are flipped to point up. At this point this system can be 

described with an infinite positive temperature.5 If the system takes on more internal energy the 

temperature will flip from positive infinity to negative infinity. The system now loses entropy as 

it gains entropy and its temperature is negative. This continues until all of the dipoles in the 

system are flipped up and the system has reached the upper bound for its internal energy. A 

graph of the energy-entropy relation for this process can be seen in the graph on the right in Fig 1.  

 An experiment was conducted to cause a two-state paramagnet to exhibit negative 

temperature by Purcell and Pound in 1950.7 The lithium nuclei in a lithium-fluoride crystal were 

used as a nuclear paramagnet. The crystal was initially placed in a strong magnetic field of 6376 

gauss. It was then transferred to a solenoid with a field of 100 gauss. Current was discharged 

through the solenoid to reverse the field to -100 gauss. The crystal was then removed from the 

solenoid and its magnetization was measured. The strong magnetic field served to align nearly 

all of the dipoles in the crystal with its field. When the crystal was placed in the solenoid and the 

field of the solenoid was reversed, most of the dipoles in the crystal were suddenly pointed 

against the magnetic field of the solenoid. In this sense, more than half of the dipoles had a high 

energy spin orientation and the two-state paramagnet could be described with a negative 

temperature. The duration of the negative temperature state lasted for about five minutes.  

Periodic sampling of the crystal’s magnetization can be seen in Fig 3. The peaks below the x-

axis correspond to when the paramagnet had negative temperature. 

 A more complete description of the energy of the nuclear paramagnet used in this 

experiment includes spin-spin interactions and spin-lattice interactions.2 

𝑈𝑡𝑜𝑡 = −𝒉 ∙ 𝜇𝑩 +𝑊𝑠𝑠 +𝑊𝑠𝑙 

The ability of the system to have bounded internal energy and to exhibit negative absolute 

temperature requires the spin-spin and spin-lattice interactions to be negligible. The spin-lattice 

interactions are negligible so long as the relaxation time of the interactions is long enough to 

ignore them on small time scales. The spin-spin interactions can be ignored so long as they are 

negligible compared to the energy of the magnetic dipole moments.2 

(7) 
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 Another system capable of exhibiting negative absolute temperature can be found in the 

operation of a laser. The basic components of a laser are the lasing medium and parallel mirrors 

that bound the optical cavity.8 The lasing medium is situated in between the mirrors. In solid-

state lasers the lasing medium is a solid but liquid and gaseous lasing mediums also exist. The 

mirrors typically have a reflectivity of about 99% to minimize optical loss.8 In addition a laser 

has some mechanism which pumps energy into the lasing medium to excite electrons. In solid 

state lasers a bulb known as a flashlamp is wrapped around the lasing medium to “pump” energy 

via light into the lasing medium. 

 Laser light comes from the relaxation of excited photons from an excited state back to the 

ground state. In practical lasers a three-level or four-level excitation and emission process takes 

place but a two-level process with just a ground state and one excited state gives sufficient 

theoretical understanding for our purposes.9 A diagram of three-level and four-level processes 

can be seen in Fig. 4. The frequency of the emitted laser light is given by  

𝐸 = ℎ𝑓 

In the two-level process the difference in energies between the ground state and the excited state, 

∆𝐸, is equal to the energy of the emitted light. This in turn is equal to Planck’s constant, h, times 

the frequency of the light, f. The emission process can be seen in Fig. 5 where an electron is first 

excited by incoming light from a flashlamp or other exciting source and then relaxes back to the 

ground state by emitting a photon. The emitted light travels back and forth in the optical cavity 

as it reflects off of the parallel mirrors. This creates standing waves of monochromatic light in 

the laser. Allowed wavelengths of light are half integer multiples of the length of the optical 

cavity 

𝐿 =
𝜆𝑛

2
 

As photons travel back and forth through the lasing medium, they stimulate emission of 

additional photons. For a coherent laser beam to develop, sometimes referred to as lasing, it is 

necessary for the laser to reach a certain threshold gain in the density of photons to offset optical 

losses.10  

 The phenomenon which makes it possible for many lasers to reach the necessary 

threshold gain is known as a population inversion.11, 12 A population inversion can be viewed as 

an inversion of the expected probability distribution from the Boltzmann distribution6  

(9) 

(8) 
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𝑃 =
1

𝑍
𝑒−

𝐸

𝑘𝑇 

The Boltzmann distribution gives the probability of an electron being in a certain energy level at 

thermal equilibrium. This probability decays exponentially for energy levels above the ground 

state. For a system in thermal equilibrium, if we consider the ground state and the first excited 

state, an electron will always have a higher probability of being in the ground state than in the 

excited state. In other words the ratio between the two states will always be greater than one. 

𝑃1

𝑃0
=

𝑒−𝐸1/𝑘𝑇

𝑒−𝐸0/𝑘𝑇
> 1 

However, by putting extra energy into the system so it is not in thermal equilibrium it is possible 

to give the electron a higher probability of being in the excited state. In this case the ratio 

between the two states is less than one.  

𝑃1

𝑃0
=

𝑒−𝐸1/𝑘𝑇

𝑒−𝐸0/𝑘𝑇
< 1 

In this case a population inversion has taken place.  

 The electron gas in the lasing medium of a laser can be viewed as its own system within 

the laser. It is this system which is capable of exhibiting negative temperature. The point at 

which the electron gas reaches a negative temperature is the same as the point where a 

population inversion is reached. While the laser is off, the electrons in the lasing medium are in 

thermal equilibrium with their environment. When the laser is turned on the flashlamp pumps 

extra energy into the lasing medium so that a majority of the available electrons are in excited 

states and a population inversion takes place. At this point, attempting to describe the probability 

distribution of the electrons with Boltzmann factors, exp⁡(−𝐸/𝑘𝑇), shows that the temperature 

of the electrons must be negative.13 Rather than exponentially decaying, the probability of 

electron occupation increases with increasing energy. This is only possible if the temperature 

value is negative and the exponential becomes positive. 

 The theory of negative absolute temperature has some implications both for practical and 

hypothetical use. While there is some debate over whether negative absolute temperature is an 

artifact of inappropriate definitions for entropy,2, 3, 6, 13 if the definition given here for entropy is 

accepted then negative absolute temperature is useful for describing exotic systems with an 

upper bound on their internal energy. This usefulness comes from the nature of such systems to 

decrease in entropy as their internal energy is increased past a certain threshold. As for the 

hypothetical, a gas of attracting atoms can be kept from collapsing on itself if the gas exhibits a 

(10) 

(12) 

(11) 
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negative absolute temperature.14, 15 This raises parallels to the role dark energy is hypothesized to 

play in preventing the universe from contracting due to the force of gravity.14  In addition, 

negative absolute temperature systems raise the question of whether a Carnot heat engine with 

100% or greater efficiency could be constructed.2, 14  A Carnot heat engine operates between two 

different temperature reservoirs. The efficiency of a Carnot heat engine is given by  

𝑒 ≤ 1 −
𝑇𝑐

𝑇ℎ
 

where Tc and Th are the temperatures of the cold and hot reservoirs respectively.1 A possible 

Carnot cycle for a heat pump using a two-state paramagnet as the working substance is described 

in Fig. 6.  

 In summary, negative absolute temperatures are possible for systems with an upper 

bound on their internal energy. Two systems were discussed which can exhibit negative absolute 

temperature: a two-state paramagnet and the electron gas system in the lasing medium of a laser. 

For the paramagnet, the internal energy was bounded by the number of magnetic dipoles and the 

energies of their two spin orientations within a uniform magnetic field. The point at which half 

of the dipoles pointed up and half pointed down marked the threshold where an increase in 

internal energy caused a decrease in entropy. Past this point the system exhibited negative 

absolute temperature. The electron gas in a two-level laser can be described similarly if the 

ground state is taken as the low energy orientation and the excited state is taken as the high 

energy orientation. In this case, the internal energy is bounded by the number of available 

electrons and the difference in energy of the ground state and excited state. Similarly to the case 

with the two-state paramagnet, a negative temperature is reached once more than half of the 

available electrons in the lasing medium are in the excited state. A population inversion is an 

equivalent way to describe this phenomenon.  

 Additional systems which have been found to exhibit negative absolute temperature 

include a gas of ultracold attracting bosons15 and two dimensional Onsager vortex clusters which 

can form in quantum fluids.4 At present, the theory of negative absolute temperature has limited 

practical use, but it has application in describing systems where entropy can decrease with 

increasing internal energy. 

(13) 
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Fig. 1. “Energy and entropy are the basic elements in a definition of temperature in which 

negative values arise naturally: Temperature measure the amount of energy that must be 

added to a system to yield a given change in entropy. Here entropy (black curves) and 

temperature (colored curves) are both graphed as functions of energy. In a vibrational system 

(left) an increase in energy invariably brings an increase in entropy, and so the temperature is 

always positive. In the spin system, however (right), the entropy has a maximum possible 

value; at that point the change in the entropy is zero, and so the temperature is infinite. With 

each further increase in energy the entropy is reduced, and so the sign of the relation changes: 

the temperature becomes negative and at the maximum energy reaches minus zero.” W. G. 

Proctor, Sci. Amer. 239 (2), 78 (1978), doi: 10.1038/scientificamerican0878-90 
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Fig. 2. A diagram of the distribution of members in a lattice system and a spin system 

amongst available energy states. As the lattice temperature increases the distribution becomes 

more even but the ground state remains the most occupied. For the spin system the energy is 

bounded and negative temperature is reached once the lowest energy spin state is less 

occupied than the other spin states. W. G. Proctor, Sci. Amer. 239 (2), 78 (1978), doi: 

10.1038/scientificamerican0878-90 



13 
 

 

 

 

 

 

 

 

 

 

Fig. 3. “A typical record of the reversed nuclear magnetization. On the left is a deflection 

characteristic of the normal state at equilibrium magnetization (T about 300oK), followed by 

the reversed deflection (T about -350o K), decaying (T goes to – infinity) through zero 

deflection (T=infinity) to the initial equilibrium state.” E. M. Purcell and R. V. Pound, Phys. 

Rev. 81, 279 (1951) 



14 
 

 

 

 

 

 

 

 

 

 

Fig. 4. “Different possibilities for four and three-level systems, showing pump (solid) and 

laser (dashed) transitions. All four cases can be quantitatively compared, on the basis of the 

“system level”, l.” J. O. White, Ieee Jour. of Quan. Ele. 45 (10), 1213 (2009). 
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Fig. 5. “Schematic 2-level system for absorption and stimulated emission transitions (atoms 

with two energy levels).” Z. K.-H. Chu, arXiv, 1 (2009). doi arXiv:0902.0421
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Fig. 6. ““Carnot” cycle for a heat pump using negative temperatures. The area enclosed by the 

loop equals the total energy transferred per cycle. For the nuclear spin system, the equation of the 

temperature-T isotherm is h = (kt/μ)arc tanh(M/Nμ). The vertical line at M = Nμ is an asymptote 

of all the isotherms, both for positive and negative temperatures. M1 and M2 are the 

magnetization values at which the magnetic field is suddenly reversed. Nμ is the maximum value 

the magnetization can acquire.” E. Abraham and O. Penrose, Phys. Rev. E 95 (1), 012125 (2017), 

doi: 10.1103/PhysRevE.95.012125 

 


