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Abstract: Blob detection (BD) is one of the fundamental techniques in image processing and
analysis. Blobs are connected regions of pixels which (hopefully) correspond to objects or other
structures of interest in an image. BD is a multi-step process: 1) blob extraction to create a
binary map of blob pixels from the original image, 2) blob processing to remove noise, 3) blob
identification to group the blob pixels into blobs based on connectivity, 4) feature extraction to
retrieve desired blob characteristics such as area or position. An overview is made of important
BD concepts and common BD algorithms, including thresholding and differential methods. The
applications of some algorithms are explored in the field of biomedical research. Also explored
is the relevance of machine learning to both BD and the biomedical field. The importance of
machine learning continues to grow due to its ability to automate processing of large data sets.

1. Introduction

Blob detection (BD) is a common goal in the fields of image processing and image analysis. It is
used to identify objects in an image by determining the pixel regions corresponding to the objects.
Biomedical research makes extensive use of BD for identifying cells and cellular structures. BD
has also seen use in many industrial applications and for traffic and facial recognition systems.

Before discussing what BD is, it may be useful to start by explaining what is meant by a blob.
A blob is a region of connected pixels in an image. In comparison to edges and corners, blobs
are 2D structures, rather than 1D. Blobs don’t have any particular shape, though it is common to
try to match blobs to some desired target. When representing a blob, it is usually sufficient to use
a binarized copy of the image containing the blob. In this way blobs are sometimes given the
acronym of BLOB for "Binary Large Object" [1]. The concept of BLOBs is not unique to image
processing, however, so we will stick to using the term "blob".

BD is the combination of blob extraction and blob processing, followed by blob identification
or connected component analysis. During blob extraction, the initial binarization of the image is
performed. In some cases this is enough to find the desired blobs, but often blob processing is
necessary to remove noise or further segment the binary regions. The identification step then
uses the binary map to group pixels into blobs based on their connectivity [1].

The connectivity of a region can be defined in different ways, with 4-connectivity and 8-
connectivity being the most common. Using 4-connectivity, pixels horizontally and vertically
adjacent are considered connected, while with 8-connectivity diagonally adjacent pixels are
considered connected as well [2]. It may be worthwhile to note that these definitions of
connectivity assume a Cartesian grid of pixels. If pixels are arranged differently, such as in a
hexagonal grid, other definitions of connectivity must be used.

There are many techniques for extracting blobs–partly due to the lack of a standard definition
for what constitutes a blob. While a blob is always a region of connected pixels, deciding how
to distinguish those regions from the rest of the image depends on the application. To consider
some examples, a region of interest could be a bright spot or a dark spot in an image with
near-constant intensity as might be the case for a road, it could be an area centered around a point
of illumination as is the case for cells stained with fluorescent dye, or it could be a particular
pattern matched to a template as might be the case for facial recognition. Each of these cases is
suited to different methods of blob extraction.
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After identifying blobs in an image it is possible to determine their properties. Properties can
be grouped as statistical or geometrical based on whether they are derived from the individual
pixels or the shape of the blob as a whole [2]. A few examples of statistical properties include
area, center of mass and orientation, while a few common geometrical properties are bounding
box, bounding circle, perimeter and circularity. Determining properties allows blobs to be filtered
and sorted in a final blob classification step [1, 3].

Blob properties seem to often be referred to as features. This can be confusing, though,
because features is also a general term in the field of image processing for blobs, edges and/or
corners identified in an image. To avoid that confusion, we will use the terms properties or blob
features rather than simply features.

Two concepts fundamental to BD are histograms and binary images. In image processing,
histograms are used to display the number of pixels with each intensity value in an image [4]. This
is simplest to image for grayscale images but can be applied to color images as well. Histograms
are often a useful in blob extraction as a way to identify pixel intensities corresponding to blobs,
since blob pixels will create peaks on the histogram. In the ideal case, the histogram is bimodal,
with one peak corresponding to the background of the image and the other to the blob(s) [2, 5].

Following blob extraction, binary images are used to label pixels as part of a blob or the
background. If storage efficiency is important, true binary images should be used, but otherwise
it is common to use pseudo-binary images where 8-bit pixels are assigned to either 0 (black) or
255 (white) [4]. When dealing with binary images, it is important to recognize the assignment of
blob pixels and background pixels to true and false values is quite arbitrary. Similarly, there is no
universal convention for assigning colors to true and false values [5].

2. Current State of the Art

2.1. Blob Detection Process

BD begins with the extraction of a binary map from an image. When needed, this is followed by
blob processing to remove noise. Blob identification is then performed to group the blob pixels
in the binary image into connected regions. With the blobs identified, blob features can finally be
determined. Now that we’ve discussed the basics of BD let’s look at the first three of these steps
in more detail.

We’ll consider blob extraction in the context of gray-scale images and global image thresholding–
perhaps the simplest method of generating the binary map. Global image thresholding assigns all
pixels below a certain intensity threshold to a single value and all pixels above the threshold to
another value [5]. This creates a binary map with blob pixels corresponding to either bright or
dark regions in the original image.

Good lighting is essential for image thresholding to be effective. Generally blobs correspond to
objects or patterns in an image which need to be identified. For those regions to be distinguished
from the background there must be clear contrast between the two and the overall brightness
must be consistent across the image. It is possible to gain more flexibility by using dynamic
thresholding. This allows different thresholds to be used in different parts of the image based
on the local brightness. However, there must still be sufficient contrast between the regions of
interest and the background.

Some issues following from blob extraction can be addressed by morphological noise reduction
techniques. Small spots in the binary map as well as noisy blob edges can by removed through
opening [2]. opening is the combination of erosion and dilation. Small features are first removed
by erosion and then the remaining features are grown back to their original size [5]. On the other
hand, holes or gaps in the binary map can be filled using closing [2]. Like opening, closing uses
both erosion and dilation but in reverse order. Features are grown, closing the gaps, before being
shrunk back down [5].

At this point, blobs should be clearly visible in the binary map and blob identification can
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be performed. The task of grouping pixels into connected regions is easy enough for humans
to perform by inspection, but it is not trivial to perform algorithmically. One approach is the
so-called Grass-Fire Algorithm [1]. The algorithm works by checking every pixel in the binary
map. Whenever it finds a blob pixel, it starts a "grass-fire"–checking every adjacent pixel based
on the chosen connectivity definition. It continues with the fire until it is unable to find another
adjacent pixel, marking all found pixels as part of the current blob along its way. The algorithm
can be implemented recursively or iteratively, each with their own trade-offs.

2.2. Overview of Other Algorithms

There are many other algorithms which can be used in the BD process. We’ll start by going over
differential methods for blob extraction. These are some of the most powerful and flexible BD
methods available, avoiding some of the shortcomings of simple thresholding. We’ll then discuss
the watershed algorithm for blob segmentation following blob extraction. We’ll finish with a
niche method for blob detection known as template matching.

Using a gradient filter to calculate the local intensity derivative across an image is a fundamental
part of edge detection. Gradient filters can also be used for BD, however. A formal definition for
a blob used by Tony Lindeberg, an influential BD theorist, treats a blob as the combination of a
local extremum and a saddle point [6]. Both of these elements can be identified by creating a
gradient intensity map of an image.

Several different gradient filters are commonly used. A long-standing filter is the Laplacian of
Gaussian (LoG), which combines smoothing with the gradient calculation to improve efficiency [4].
Increased efficiency can be obtained using the Difference of Gaussians (DoG) at the cost of
being an approximation of the gradient [7]. For scale-selection algorithms, Lindeberg found the
Determinant of the Hessian (DoH) is less biased than the LoG [8].

Differential methods have the advantage of performing well even when noise is present [7].
Apart from thresholding, another simple approach is to just use local intensity extrema to detect
blobs and forgo use of a gradient filter. This approach performs pourly with noise, however; a
single blob might be flagged as multiple smaller blobs [7].

There are cases, though, where splitting a single blob into multiple smaller blobs is the goal.
An example is identifying cells in the process of dividing. Contrast between the dividing cells
is often too small for thresholding or local extrema BD algorithms to identify them as separate
blobs. In these cases a watershed algorithm can be used to separate the blobs.

A common analogy for describing the watershed algorithm is rain falling on a mountian
range [3, 7]. Imagine the image as a topographic map where the local extrema used to identify
the blobs are peaks. Now imagine rainfall running down the peaks into the background of the
image. The water streaming down peaks within the same blob will meet somewhere in between
them, creating a boundary. This boundary can then be used to segment the blob.

Another blob detection method unlike those already discussed is template matching [7].
Template matching uses a reference image–smaller than the image to perform BD on–and scans
it across every pixel location. Rather than searching for exact matches, it is generally more useful
to calculate the percentage match at each pixel location. Still, template matching is particularly
poor at identifying blobs of different sizes so use cases are more limited.

2.3. Other Topics

Some mention has been made of multi-scale algorithms. Differential BD approaches use filters
which can only be tuned to detect blobs of one size at a time. This crippling flaw can be addressed
by processing the image with a set of filters of different sizes [9]. The blobs detected by each
filter are then compared with each other and resolved to avoid duplicate tags of the same region.

Such multi-scale designs are the de-facto approach when using differential BD algorithms.
They have been greatly influence by the work of Tony Lindeberg, who has published more than a
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dozen papers relating to scale-space and BD extending as far back as 1990. An additional benefit
is the removal of the need for a separate segmentation step when contrast between blobs is low.

The focus of this paper is on 2D BD algorithms, but it is also possible to detect blobs in 3D
images. In a study on magnetic resonance imaging (MRI) of kidney glomeruli, Zhang et. al.
proposed the Hessian-based Difference of Gaussians (HDoG) for efficient detection of blobs
in 3D images [10]. Their motivation for designing a new differential algorithm was the poor
segmentation performance of standard algorithms like the LoG. Conceptually, 3D blobs are quite
similar to 2D blobs; they contain a local intensity maxima and can be any arbitrary shape. The
issue of lighting becomes more complicated, particularly in cases like MRI where there is no
"light" to speak of, but contrast between blobs and their surroundings remains important.

Most BD algorithms are limited to pixel-precision due to their nature of being defined as a
group of connected pixels. It is possible to define a subpixel precise center for a blob using a center
of mass calculation. Defining the boundaries of blobs with subpixel precision, however, either
requires fitting a geometric shape to the blob as in the work of Stefan Hinz [3], or performing
complementary edge detection to extract subpixel contours for each blob [2]. In this way, BD
and edge detection can sometimes be used to achieve the same goal: construction of 2D regions
in an image.

3. Technology

BD sees much use in biomedical research and applications. Large sets of data frequently
encountered in the field are often impractical to process manually. Using BD allows items of
interest such as cells to be identified across an entire image. This can allow hundreds of items to
be identified and analyzed at once rather than one at a time.

A study on BD of kidney glomeruli imaged with magnetic resonance was previously mentioned.
To provide some medical context, the glomeruli of the kidney form a network of blood vessels
which are responsible for transporting waste out of the bloodstream. Though they are blood
vessels, they appear as spots in MRI images [10]. This study highlights the ability of BD to be
used with non-optical imaging (as well as 3D imaging).

Fluorescent dye microscopy is a common technique for imaging cells and even particular
components within cells. A dye is selected which binds to the desired cells or components. Kong
et. al. explored the use of their generalized Laplacian of Gaussian (gLoG) filter for different sets
of fluorescent microscopy images [11]. One of the sets showcased the filter’s ability to determine
the orientation of cell nuclei. Another set illustrated the ability of their BD algorithm to segment
an image based on the locations and number of cells. A curious quality of their segmentation
approach was the choice not to distinguish between cells and the background. In their study, the
extra information of precise cell boundaries wasn’t needed, so the extra processing effor would
have been a waste.

While BD is powerful, on its own it still requires the selection of suitable parameters.
Optimizing parameters for a handful of images can be tedious and prohibitive for large image
sets. A natural next step to the problem of too much data is machine learning. Machine learning
creates the possibility of training a program with a representative set of sample images to select
the parameters automatically.

Martin Ter Haak described the use of machine learning in the context of ribonucleic acid
(RNA) sequencing using fluorescent dye microscopy [7]. The overall goal was to outline a
machine learning BD algorithm capable of automatically selecting parameters for blob detection
of large sets of images. Additional goals were to handle 3D images as well as images too large to
fit in memory.
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4. Future Directions

There are several areas where further research would be valuable. Several different BD algorithms
were discussed but limited attention was given to the advantages of one over another. Studies
comparing the performance of one algorithm to another could provide further insight. Similarities
were also drawn between blob extraction and contour extraction. Given the ability of these two
methods to both outline regions of interest, considering trade-offs between the two would shed
light on when it is more appropriate to use one over the other.

Many other applications of BD bear exploration as well. BD is used for facial recognition,
tracking cars in traffic and identifying roads in satellite images. There are also likely applications
in the semiconductor industry given the importance of image processing for analysis of microscopy
data. Parallels might even be found between biomedical and semiconductor research.

In terms of development in the field of BD, there is still untapped potential in machine learning.
Haak cited two popular software packages for biomedical research, CellProfiler and Fiji, which
at the time of publication (2018) did not support or only partially supported machine learning [7].
A number of other packages were available which allowed partial automation through machine
learning, but none which offered full automation.

Another potential use for machine learning is in automation of threshold selection for the
blob extraction step of BD. Przemysław Pietrzkiewicz broke down several different low-level
paradigms for selecting a threshold appropriate for a variety of objects and patterns under different
lighting conditions [2]. Rather than choose a method manually, machine learning could be used
to automate the selection.
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